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Abstract

Physiological waveforms (e.g., ECG, PPG, EEG)
encode clinically meaningful information in fine-
grained morphology, precise timing, and cross-
channel dynamics, yet most machine learning
systems still treat them as generic time series
and optimize end-to-end prediction. In this posi-
tion paper, we argue for verifiable physiologi-
cal waveform reasoning: extracting localized,
measurable signal evidence from raw signals,
interpreting that evidence into physiological
semantics, and supporting clinically grounded
decisions. Waveform reasoning is challenging
due to acquisition heterogeneity, signal fidelity,
complex semantics and cross-channel coupled dy-
namics. We analyze why existing model fami-
lies remain insufficient: physiological foundation
models learn strong perceptual representations
but remain weak at verifiable reasoning, while
LLM-based adaptations have limited waveform
understanding. To bridge this gap, we advo-
cate verifiable, closed-loop systems that unify
waveform semantics with language intelligence.
Concretely, we propose a dual-process architec-
ture that System 1 aligns physiological waveforms
with language, and System 2 provides agentic rea-
soning via a Plan–Act–Verify loop, together en-
abling verifiable physiological waveform reason-
ing. And we propose evaluations beyond accuracy,
emphasizing traceability, replayability, counter-
factual robustness, and calibrated abstention.
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1. Introduction
Physiological waveforms such as electrocardiograms (ECG),
photoplethysmograms (PPG), and electroencephalograms
(EEG) are high-fidelity, time-resolved measurements of un-
derlying biological dynamics. Unlike many time-series fore-
casting benchmarks where performance can often be driven
by coarse trends, seasonality, or global summary statistics
(Chang et al., 2025a; Ye et al., 2025), the clinical meaning
of physiological waveforms is concentrated in fine-grained
morphology, precise timing, and structured dependencies
across channels. Localized events (e.g., QRS onsets/off-
sets, dicrotic notches) support standardized measurements
and guideline-driven interpretation (Clifford et al., 2012;
Orphanidou et al., 2014b; Wang et al., 2025a). In practice,
clinicians do not “read” a waveform by a single global score;
they delineate events, measure intervals and amplitudes,
assess signal quality, and reconcile inconsistencies across
leads or modalities before reaching guideline-constrained
decisions (Shcherbina et al., 2017; Bent et al., 2020).

Recent years have seen rapid progress in applying deep
learning to waveform modeling, achieving strong perfor-
mance in arrhythmia detection and broader ECG interpre-
tation (Rajpurkar et al., 2017; Hannun et al., 2019; Ribeiro
et al., 2020; Attia et al., 2019; Ismail Fawaz et al., 2019).
More recently, physiological foundation models (Phys-
ioFMs) promise transferable representations and scalable
pretraining regimes (Wiggins & Tejani, 2022; Mehari &
Strodthoff, 2022; Li et al., 2025b). In parallel, large lan-
guage model (LLM)-centric adaptations have emerged that
use language as an interface for clinical tasks, including
explanation generation, and guideline-aware summarization.
Despite these advances, much of the literature still empha-
sizes end-to-end prediction. This clinician workflow also
highlights a failure mode that end-to-end prediction can ob-
scure: undetected wrongness under acquisition artifacts and
heterogeneity. A motion-corrupted PPG segment can mimic
irregular rhythm; a baseline wander can distort ST segments;
missing or swapped ECG leads can yield plausible-looking
signals that nevertheless invalidate downstream measure-
ments. A system that outputs a prediction without exposing
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what evidence it relied on is difficult to audit.

We argue that physiological signal AI should be framed
as physiological waveform reasoning: extracting local-
ized, verifiable evidence from raw signals, translating
that evidence into physiological semantics, and produc-
ing clinically grounded decisions rather than only end-
to-end predictions. Here, “verifiable” is an operational
requirement that reasoning be entailed by measurable evi-
dence objects. The decision should be creditable only to the
extent that it can be reconstructed from recorded evidence
objects and the procedures that produced them, yielding
traceability and replayability rather than post-hoc narrative.

This reframing also clarifies why current model families
remain insufficient. PhysioFMs excel as perceptual back-
bones, but their typical outputs do not constitute evidence
objects with provenance; they provide limited mechanisms
for unit-consistent measurements, explicit physiological se-
mantics, or guideline-constrained decision logic (Rudin,
2019; Li et al., 2025b). Conversely, LLM-centric adapta-
tions can improve the linguistic form of reasoning (e.g.,
producing fluent explanations, summaries, or differential di-
agnoses) but often rely on lossy interfaces to high-frequency
morphology, weak grounding to raw signals, and rationales
that are not guaranteed to be logically supported by the
waveform (Schick et al., 2023; Shinn et al., 2023; Cao et al.,
2024; Goswami et al., 2024; Jin et al., 2024b).

We therefore advocate verifiable, closed-loop systems
that unify waveform semantics with language intelli-
gence. Concretely, we propose a dual-process that Sys-
tem 1 aligns the model with physiological waveforms and
language, enabling faithful waveform understanding, while
System 2 performs agentic reasoning via a Plan–Act–Verify
loop that decomposes tasks, requests missing evidence,
invokes deterministic measurement and validation tools,
checks cross-view consistency, and abstains or escalates
when evidence quality or constraints do not support a safe
conclusion (Guo et al., 2017; Ovadia et al., 2019; Geifman
& El-Yaniv, 2019). Accordingly, evaluations should move
beyond accuracy to score whether outputs are traceable
to localized evidence, replayable under logged procedures,
robust to nuisance perturbations yet sensitive to clinically
meaningful counterfactual changes, and uncertainty-aware
through calibrated abstention or escalation.

Contributions. The main contributions are as follows: ❶
We reframe physiological signal AI as verifiable physio-
logical waveform reasoning: extracting evidence from raw
signals, mapping evidence to physiological semantics, and
supporting clinical decisions. ❷ We analyze the key chal-
lenges and why current model families remain insufficient.
PhysioFMs rarely expose auditable verification objects,
while LLM-centric adaptations often rely on lossy wave-
form grounding. ❸ We propose a dual-process, closed-loop

blueprint in which System 1 aligns physiological waveforms
with language, while System 2 performs agentic Plan–Act–
Verify reasoning for meaningful physiological waveform
reasoning. ❹ We advocate evaluations beyond end-to-end
prediction, emphasizing evidence traceability, replayability,
counterfactual robustness, and uncertainty-aware decisions.

2. Beyond Prediction: Toward Verifiable
Physiological Waveform Reasoning

2.1. What are Physiological Waveforms

Physiological waveforms encompass the direct measure-
ment of the body’s electrical activity or hemodynamic re-
sponses. We define physiological waveforms as high-fidelity
temporal projections of continuous biological processes.
Unlike generic time-series data (e.g., financial stocks or
weather metrics) where analysis often centers on global
trends, seasonality, or statistical distribution (Chang et al.,
2025a; Ye et al., 2025; Chang et al., 2025b), physiological
waveforms are characterized by precise morphological se-
mantics and mechanistic coupling. The information is dense
and encoded not just in the value at time t, but in the mor-
phology, phase relationships, and quasi-periodic structure.
Formally, we represent a physiological waveform recording
as a multivariate tensor X ∈ RC×T , where T represents
the discrete sampling of a continuous biological state and
C denotes the spatial or modal channels (e.g., 12 leads of
ECG). We use physiological waveforms to refer to widely
used sensing modalities such as ECG, PPG, EEG, EMG,
and PCG. For completeness, we summarize their sensing
principles and typical characteristics in Appendix A.

2.2. Verifiable Physiological Waveform Reasoning

We define physiological waveform reasoning as the capa-
bility to transform raw biosignals into actionable clinical
logic through a structured inference process grounded in
waveform evidence. Unlike standard end-to-end prediction,
which may rely on opaque correlations (Ismail Fawaz et al.,
2019; Rudin, 2019), reasoning requires explicit interme-
diate products that connect low-level signal dynamics to
high-level physiological concepts under established clinical
principles (Rajpurkar et al., 2022; Wagner & Strauss, 2013).

We treat verifiability as an operational contract. Specifically,
a system should emit verification objects—signal-quality
summaries, localized events with explicit time/lead indices,
and unit-consistent measurements defined by reproducible
windows and procedures—so that intermediate claims and
final decisions are acceptable only if they can be re-derived
by replayable checks. This yields an auditable interface
where conclusions remain grounded in localized, measur-
able waveform evidence rather than post-hoc narrative. We
organize physiological waveform reasoning along two axes
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Figure 1. Verifiable physiological waveform reasoning. We organize reasoning along two axes: (1) Left: Reasoning Structure
describes the inference topology: Direct, Linear-Chain, or Branch-Structured. (2) Right: Reasoning Objective specifies the target level:
Level 1 Evidence (e.g., segmentation/measurement), Level 2 Interpretation (e.g., semantics), and Level 3 Decision (e.g., diagnosis).

(Fig. 1): Reasoning Structure and Reasoning Objective

Reasoning Structure. We define Reasoning Structure as
the topology by which a system composes intermediate
states into a conclusion (Wei et al., 2022). We summarize
three topologies: Direct reasoning, Linear-chain reasoning,
and Branch-structured reasoning. In practice, many systems
either adopt a single topology or are hybrids that combine
multiple topologies.

(1) Direct Reasoning. A single-pass mapping from raw
waveforms directly to a clinical output without explicit in-
termediate states. This is the dominant paradigm in current
physiological deep learning (e.g., end-to-end arrhythmia
detection (Hannun et al., 2019; Attia et al., 2019)). While
effective for pattern matching, this “black-box” approach
lacks the mechanisms to isolate specific morphological evi-
dence (e.g., P-wave absence), making it difficult to distin-
guish between true pathology and artifacts.

(2) Linear-Chain Reasoning. A sequential inference pro-
cess where conclusions are built through intermediate,
checkable steps (e.g., Event Delineation → Interval Mea-
surement → Rule Application → Diagnosis). Adapting the
principles of Chain-of-Thought prompting (Wei et al., 2022)
to waveforms, this structure mimics the standard clinical
workflow of first quantifying indices before interpreting
them, thereby enforcing logical traceability and allowing
for error localization at specific steps (Koh et al., 2020).

(3) Branch-Structured Reasoning. A non-linear process
that explores multiple concurrent hypotheses or verifica-
tion paths before aggregating a final decision. Inspired
by Tree-of-Thoughts frameworks (Yao et al., 2023), this
approach is uniquely suited for complex differential diagno-

sis. For example, a system might spawn separate reasoning
branches to evaluate competing explanations for a wide-
complex tachycardia (e.g., Branch A: VTach vs. Branch
B: SVT with Aberrancy), weighing the evidence for each
hypothesis against clinical guidelines before converging on
a conclusion.

Reasoning Objective. We define Reasoning Objective as
the level of capability a system is expected to achieve. We
propose a hierarchy of increasing complexity: Level 1: Evi-
dence, Level 2: Interpretation, and Level 3: Decision.

(1) Level 1: Evidence. This level is to extract verifiable
observations from raw waveforms. It prioritizes auditable
outputs (timestamps and unit-bearing measurements) that
can be independently re-computed from the signal.

❶ Signal Quality Assessment. This objective characterizes
whether a segment/lead is physiologically trustworthy by
detecting acquisition failures and artifacts and reporting
explicit quality indicators (e.g., SQIs) used for weighting or
exclusion (Clifford et al., 2012; Orphanidou et al., 2014a).

❷ Event Segmentation. This objective anchors clinically de-
fined fiducial points with precise time indices (e.g., P/QRS/T
onsets/offsets for ECG) under standardized conventions,
providing the coordinates required for reproducible mea-
surement (Party et al., 1981).

❸ Physiological Measurement Extraction. This objective
derives clinical indices as scalar values with physical units
and well-defined windows (e.g., QT/QTc, QRS duration,
HRV, PTT), ensuring results are recomputable from fidu-
cials rather than implicit latent states (Malik, 1996; Ding &
Zhang, 2019).
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❹ Evidence Localization. This objective links every claim
to the exact time ranges and channels/leads (and interme-
diate fiducials/measurements) that support it, enabling au-
ditability and discouraging unsupported post-hoc narratives
(Rudin, 2019).

(2) Level 2: Interpretation. This level synthesizes Level-1
evidence into physiological semantics, turning timestamps
and measurements into clinically meaningful concepts under
biological constraints.

❶ Morphology Semantics. This objective maps waveform
geometry to physiological and pathological concepts (e.g.,
sawtooth atrial activity → atrial flutter; ST elevation →
acute myocardial injury/ischemia). The emphasis is concept
grounding in standardized ECG interpretation conventions
rather than pattern matching alone (Kligfield et al., 2007).

❷ Rhythm and Cycle Structure. This objective infers the or-
ganizing logic of cycles from event sequences (e.g., regular-
ity, bigeminy, compensatory pauses), using interval patterns
and beat-to-beat dependencies. It is distinct from morphol-
ogy because the same beat shape can appear under different
rhythm regimes (Moody & Mark, 2001).

❸ Cross-Lead Concordance. This objective enforces spa-
tial consistency across leads as multiple views of the same
cardiac source (e.g., inferior MI patterns coherently ap-
pearing in II/III/aVF but not aVL). It also uses multi-lead
redundancy to separate global physiology from lead-specific
corruption (Surawicz et al., 2009).

❹ Temporal Evolution. This objective reasons over trajecto-
ries rather than snapshots, capturing clinically meaningful
state transitions (e.g., progressive QRS widening, evolving
repolarization changes). The key output is a time-ordered
narrative of change supported by repeated evidence over
windows (Goldberger et al., 2000).

❺ Physiological Cross-Signal Coupling. This objective
enforces mechanistic coherence across signals (e.g., an ECG
electrical event should be followed by a mechanical pulse
in PPG/ABP within a plausible latency such as PTT/PAT).
Violations are treated as evidence of misalignment, or sensor
failure rather than physiological conclusions (Allen, 2007).

(3) Level 3: Decision. This level converts interpreted ev-
idence into actionable clinical logic, including rule-based
conclusions, hypothesis management, and risk-aware deci-
sion behavior.

❶ Guideline-Constrained Inference. This objective applies
explicit clinical criteria to Level-1 measurements with trans-
parent rule invocation, especially for borderline cases. Out-
puts should explicitly cite which guideline conditions were
satisfied or violated (Surawicz et al., 2009).

❷ Differential Diagnosis. This objective generates and ranks

competing hypotheses that can explain the same evidence
(e.g., distinguishing VT from SVT with aberrancy). Ranking
should reflect supporting versus contradicting evidence for
each hypothesis (Reiter, 1987).

❸ Mechanistic Explanation. This objective provides a
physiology-grounded causal rationale for the conclusion
(e.g., PR prolongation indicating delayed AV nodal conduc-
tion). The goal is a plausible causal account that connects
observed measurements to underlying mechanisms (Neu-
berg, 2003).

❹ Counterfactual Robustness. This objective stress-tests
decision stability under realistic perturbations, identifying
which evidence is necessary versus incidental. Robustness
is treated as a verification step rather than a post-hoc justifi-
cation (Wachter et al., 2017).

❺ Uncertainty-Aware Abstention. This objective calibrates
confidence and supports safe deferral when evidence quality
or ambiguity is high (e.g., requesting re-recording instead
of forcing a label). Abstention should be principled (risk–
coverage tradeoff), not ad hoc (Kompa et al., 2021).

3. Why Current Model Families Fall Short
3.1. Key Challenges

Challenge 1: Acquisition Heterogeneity and Signal Fi-
delity. Acquisition heterogeneity directly degrades signal
fidelity: intermittent wear (battery/adherence gaps), mo-
tion/perfusion artifacts, and device-specific sampling/lead
configurations can systematically warp waveform morphol-
ogy and timing rather than producing rare “outliers” (Klig-
field et al., 2007; Shcherbina et al., 2017; Bent et al., 2020;
Orphanidou et al., 2014b; Clifford et al., 2012; Fine et al.,
2021). Reasoning models must therefore infer and condi-
tion on acquisition state (quality, continuity, configuration)
as an explicit latent variable before clinical interpretation
(Orphanidou et al., 2014b; Clifford et al., 2012).

Challenge 2: Complex Physiological Semantics. Wave-
form “language” is encoded in localized, high-frequency
morphology (e.g., J-point/ST–T shape, dicrotic notch) that
must be preserved and mapped to physiological concepts
(Wagner & Strauss, 2013; Kligfield et al., 2007). Bridg-
ing pattern to mechanism requires grounding measurements
in guideline definitions (e.g., ST elevation and acute my-
ocardial injury/ischemia) rather than relying on geometric
similarity alone (Thygesen et al., 2018).

Challenge 3: Multivariate and Cross-Channel Dynamics.
Physiological signals are coupled views of shared biology
(e.g., ECG electrical activation preceding the hemodynamic
PPG pulse), imposing tight phase/latency constraints across
channels (Allen, 2007; Orphanidou et al., 2014b). Effective
reasoning must test cross-channel concordance to separate
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true pathology from single-sensor corruption under motion-
related noise (Fine et al., 2021; Clifford et al., 2012).

Challenge 4: The Data-Reasoning Mismatch. Most pub-
lic datasets provide coarse labels without intermediate evi-
dence (e.g., measurements, rule traces), limiting supervision
for verifiable inference (Wagner et al., 2020; Johnson et al.,
2023; Gow et al., 2023; Oh et al., 2023). In contrast to
NLP where explicit rationales (e.g., chain-of-thought) are
common, waveform reasoning needs evidence-centric repre-
sentations that are both inspectable and intervention-friendly
(Wei et al., 2022; Koh et al., 2020; Rudin, 2019).

3.2. Model Families and Limitations

We categorize prior work by model family because archi-
tecture determines the evidence interface and the result-
ing justification, spanning physiological foundation models
(Section 3.2.1) and LLM-centric pipelines (Section 3.2.2).

3.2.1. PHYSIOLOGICAL FOUNDATION MODELS

PhysioFMs are shifting from task-specific supervised
pipelines to reusable biosignal backbones pretrained with
self-supervision (Yang et al., 2023; Jiang et al., 2025b;
Kataria et al., 2025). One route centers on scaling data
and external validation, producing open or broadly accessi-
ble backbones and cross-domain evaluations (McKeen et al.,
2025; Xu et al., 2025b; Li et al., 2025b; Abbaspourazad
et al., 2023; Luo et al., 2024; Xu et al., 2025a; Saha et al.,
2025). Second route is to better encode physiological struc-
ture: self-supervised designs that preserve spatio-temporal
dependencies and yield broad downstream utility (Coppola
et al., 2024; Na et al., 2024b;a; Wang et al., 2025c). A
third route pushes representations toward richer clinical se-
mantics and unified multi-task interfaces, sometimes via
diagnosis or disease-centric objectives, and via language-
aligned or multi-task waveform modeling (Tian et al., 2024;
Jiang et al., 2024; 2025b; Cui et al., 2024). Finally, multi-
modal and time–frequency pretraining is emerging (notably
in sleep/PSG), while cross-modal guidance and new sens-
ing modalities broaden the scope of what “physiological
foundation models” cover (Thapa et al., 2026; Huang et al.,
2026; Kjaer et al., 2025; Pillai et al., 2025; Nie et al., 2025;
Chen et al., 2025; Zhang et al., 2024; 2023).

Limitations Analysis. PhysioFMs primarily strengthen
Level-1 (Evidence) capability by learning robust waveform
representations under noise and domain shift. However, they
rarely support complex physiological waveform reasoning
because their dominant interface remains prediction-centric
rather than evidence-centric. So they do not reliably expose
localized evidence, translate morphology into intermediate
interpretations, or implement explicit decision procedures
with verification and uncertainty-aware abstention.

3.2.2. LLM-CENTRIC ADAPTATIONS

LLM-centric methods are increasingly organized around a
language-grounded interface. Rather than producing pre-
dictions alone, recent systems align waveforms with text
and leverage multimodal instruction tuning to generate re-
ports, answer questions, and support interactive interpre-
tation (Zhao et al., 2025b; Wan et al., 2025; Yang et al.,
2025). Building on this interface, a growing line of work
strengthens ECG–text alignment with clinically informed
supervision, improving semantic grounding and generaliza-
tion (Yu et al., 2024; Liu et al., 2025a; Li et al., 2025a).
In parallel, “ECG understanding” and “clinical reasoning”
are made more measurable by reframing evaluation as clini-
cally oriented question answering, supported by knowledge-
informed multimodal QA protocols (Oh et al., 2023; Wang
et al., 2025b; Pham et al., 2025). To further improve fac-
tuality and traceability at inference time, many pipelines
attach external clinical knowledge and retrieval (RAG-style)
to report generation and diagnosis/QA (Tang et al., 2025;
Yu et al., 2023). Finally, several efforts move toward
more LLM-native signal interfaces by mapping waveforms
into language-compatible units and bridging EEG–language
for open-vocabulary decoding and assisted documentation
(Jiang et al., 2025b; Chan et al., 2025; Jiang et al., 2025a).

Limitations Analysis. Many LLM-centric works still frame
the task as question answering or answer prediction and thus
rarely perform complex reasoning. Moreover, their wave-
form understanding is often shallow and indirect: upstream
feature extraction can be lossy, the mapping from represen-
tations back to measurable evidence is frequently opaque,
and generated rationales may be fluent but not entailed by
the waveform under artifacts, missing channels, or distribu-
tion shift (Huang et al., 2025). Without explicit verification
loops, these systems rarely guarantee guideline-consistent
decisions or uncertainty-aware abstention.

4. Framework Design: Unifying Waveform
Semantics and Language Intelligence

4.1. Design Goals

To bridge physiological signals and symbolic logic, we dis-
till three design goals for waveform reasoning systems. (1)
Joint waveform understanding and language-level rea-
soning. The system must align physiological waveform
with language to have strong reasoning ability and wave-
form understanding ability (Nie et al., 2023). (2) Agentic
reasoning for complex reasoning objectives. The system
must iteratively test hypotheses via targeted measurements,
cross-lead consistency checks, and tool-grounded compu-
tation (Yao et al., 2023; Shinn et al., 2023). (3) Human-
centered closed-loop evaluation and oversight. The system
must provide auditable verification objects, abstain or es-
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calate under uncertainty, and improve via feedback-driven
evaluation (Shinn et al., 2023; Yao et al., 2023).

4.2. Dual-Process Framework Architecture

Inspired by the dual-process theory in cognitive sci-
ence (Kahneman, 2011) and its recent adaptations in ma-
chine learning (Bengio, 2017; Goyal & Bengio, 2022), we
advocate a Dual-Process Architecture with two systems
to satisfy these goals simultaneously. System 1 and Sys-
tem 2 are functionally distinct but operationally coupled:
(1) System 1 (Physiological Waveform-Language Align-
ment): this system defines the alignment mechanism be-
tween physiological waveforms and the language model, so
the system attains both strong reasoning ability and strong
waveform understanding. (2) System 2 (Agentic Reason-
ing: Plan–Act–Verify): this system is the controller that
performs agentic reasoning. It plans, acquires missing veri-
fication objects via System 1 and tools, verifies claims with
deterministic measurements, checks physiological/guideline
constraints, and abstains or escalates under uncertainty.

4.2.1. SYSTEM 1: PHYSIOLOGICAL
WAVEFORM–LANGUAGE ALIGNMENT

The central question for System 1 is: how should wave-
forms be aligned with a language model so that the system
achieves strong reasoning ability and waveform understand-
ing? We propose four alignment routes, distinguished by
the interface granularity and the degree of coupling:

(i) Measurement Prompting Alignment. The most sim-
ple route is to not align raw waveforms at all, but instead
align waveform measurements into structured prompts that
an LLM can reliably read. Recent works perform few-
shot prompting on physiological time series by directly se-
rializing measured sequences into the prompt (Liu et al.,
2023), and propose retrieval-augmented, measurement-
driven prompting for ECG diagnosis (Yu et al., 2023). In
the general time-series domain, prompt-based reprogram-
ming of LLMs (treating time series as a foreign language via
prompt design) (Liu et al., 2024a; Kong et al., 2025) also fits
this route when the interface is primarily textual verification
objects rather than learned waveform embeddings.

(ii) Vision–Language Alignment. Vision–Language align-
ment converts waveforms into a visual surrogate and then
leverages the well-developed MLLM stack for reasoning.
This matches how humans consume waveforms (“look at the
tracing”), enabling direct reuse of vision–language training
recipes and instruction tuning. Recent work shows strong
potential for ECG-image instruction tuning and benchmark-
ing (Liu et al., 2024b), and for grounded ECG understanding
by combining plots with additional modalities or verification
objects (Lan et al., 2025; Seki et al., 2025).

(iii) Embedding Alignment. Embedding alignment feeds
the LLM continuous vectors computed from the raw wave-
form, retaining more signal detail. There are two common
sub-routes. (1) Specialized waveform encoders: train an en-
coder jointly with an LLM-facing interface under reasoning
supervision (instruction tuning, or contrastive alignment to
clinical text), so the representation is optimized for down-
stream reasoning rather than generic reconstruction (Chow
et al., 2024; Jin et al., 2024a; Langer et al., 2025). (2)
Adapter-based embedding alignment: freeze a strong pre-
trained PhysioFM encoder and learn lightweight adapters
to map its representations into the LLM’s embedding space
(Yu et al., 2025). The advantage is compute efficiency, as
well as better retention of raw morphology than rendering.

(iv) Discrete Token Alignment. Token alignment makes
waveform a native language by discretizing signal patches
into tokens that are processed by an autoregressive LLM.
This enables the cleanest conceptual integration—signals
and text become a single sequence model—and opens the
door to true native multimodal chain-of-thought reasoning,
where the model can attend directly to signal tokens. Ex-
amples include large-scale tokenization-based pretraining
that frames forecasting as language modeling (Ansari et al.,
2024), and wavelet-based tokenization that discretizes time-
localized frequency coefficients for autoregressive forecast-
ing (Masserano et al., 2025).

4.2.2. SYSTEM 2: AGENTIC REASONING:
PLAN–ACT–VERIFY

System 2 treats waveform interpretation and decision-
making as an iterative Plan–Act–Verify procedure rather
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than a single forward pass from inputs to labels. The rea-
soner plans, acts by requesting additional verification ob-
jects or invoking external procedures, and verifies intermedi-
ate claims before committing (Yao et al., 2023; Shinn et al.,
2023). This agentic loop is especially important for complex
waveform reasoning, where correctness depends on iterative
evidence acquisition, cross-checking, and principled back-
tracking under uncertainty (Wei et al., 2026; Zhao et al.,
2025a; Liu et al., 2025b).

Crucially, reasoning quality is measured by the trajectory:
which verification objects are requested, which tools are
used, how contradictions are handled, and when the sys-
tem stops. System 2 maintains an explicit working state
and selects actions that reduce uncertainty with minimal
cost, terminating only when the decision is supported by
auditable verification objects and physiological or guideline
constraints are satisfied; otherwise it triggers targeted re-
measurement or evidence expansion (Shinn et al., 2023). To
make this loop auditable, we propose a minimal Role-Based
Agentic Architecture with a Curator (evidence seeking), an
Analyst (deterministic execution), and a Critic (verification).

(i) The Curator: hypothesis-driven active perception
(Act). Most models passively accept a fixed input win-
dow, failing when decisive verification object lies outside
the receptive field or is obscured by artifacts. The Curator
addresses this by steering System 1 toward targeted verifica-
tion object acquisition: it requests additional temporal con-
text, alternative lead subsets, or focused re-representations
conditioned on the current hypothesis (e.g., “Retrieve the
preceding 30 seconds to test sudden vs. gradual onset”)
(Zhao et al., 2025a). This active perception mirrors clin-
ical workflows in which clinicians zoom, scroll teleme-
try, or examine specific leads before declaring a rhythm
or morphology-based diagnosis.

(ii) The Analyst: deterministic tool execution with prove-
nance (Act → Verify). Waveform reasoning often hinges
on precise measurements, which LLMs are not reliable at
producing directly. The Analyst therefore implements code-
as-reasoning: instead of emitting numbers as free-form
tokens, it calls deterministic tools or executable code for
delineation, peak detection, interval computation, and sta-
tistical checks, ensuring each quantitative claim is backed
by a reproducible execution trace (provenance) rather than a
stochastic guess (Liu et al., 2025b). This also enables prin-
cipled re-measurement when the Critic requests alternative
windows, preprocessing assumptions, or robustness checks.

(iii) The Critic: reflexion, constraint checking, and guide-
line adherence (Verify). A major failure mode of end-to-
end systems is producing fluent but physiologically impos-
sible claims. The Critic implements a reflexion loop that
stress-tests intermediate conclusions against (i) physiolog-
ical constraints (e.g., rhythm regularity vs. RR variability,

plausible interval ranges, cross-lead consistency) and (ii)
guideline logic when applicable. When inconsistencies are
detected (e.g., “irregular rhythm” declared but RR intervals
are constant), the Critic triggers backtracking: it revises
the plan, asks the Curator for additional verification object,
and instructs the Analyst to re-measure or run alternative
checks (Shinn et al., 2023; Liu et al., 2025b). Importantly,
the Critic should also control stop conditions: if verification
object quality remains low or tool outputs conflict, it should
abstain or escalate rather than force a brittle decision.

Closing the Loop: Verification, Provenance, and Over-
sight Interfaces. While the Curator–Analyst–Critic decom-
position specifies who acts in the Plan–Act–Verify loop,
verifiable waveform reasoning requires explicit closed-loop
interfaces that specify what is exchanged and recorded. In-
terface A: Verification object querying from System 1.
System 2 can call System 1 to obtain alternative waveform-
grounded views under uncertainty. Concretely, System 2
may request different temporal context, lead subsets, prepro-
cessing assumptions, or specific verification objects (e.g.,
delineation- or measurement-oriented outputs). Importantly,
this is not model updating; it is inference-time, hypothesis-
driven verification object acquisition over a fixed alignment
mechanism. Interface B: Auditable ledger of verifica-
tion object for tool-grounded claims. Rather than reiterat-
ing tool use, we require a protocol-level verification object
ledger: any quantitative assertion produced by System 2
can be accompanied by a replayable record of how it was
obtained (tool name, parameters, software version, input
segment/lead identifiers, and failure modes when applica-
ble). This ledger makes outputs reproducible and supports
debugging and downstream auditing, while leaving tool se-
lection and execution to the Analyst behavior. Interface C:
Human oversight and feedback-to-memory. For safety-
critical deployment, the system should expose auditable
artifacts so clinicians can validate what the model relied on
and intervene when verification object quality is low. Cru-
cially, human signals should be captured in structured form
and stored as workflow memory. Over time, these feedback
traces can be retrieved to guide future Plan–Act–Verify tra-
jectories or internalized through post-training optimization,
enabling continual improvement beyond one-off reflexion.

5. Evaluation: From Prediction to Verifiable
Physiological Waveform Reasoning

Physiological waveform reasoning should be evaluated as
verifiable, episode-level decision making, not single-shot
prediction. The goal is not only to be correct, but to be check-
able: intermediate claims and final decisions are credited
only if they can be re-derived from reproducible verification
objects and replayable procedures, with uncertainty handled
via abstention or escalation when support is insufficient.
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5.1. Episode-Level Evaluation via a Verification Ledger

Unit (reasoning episode). We evaluate a reasoning episode:
the complete trajectory from waveform input and task query
to final output, including intermediate requests for additional
views, verification-object extraction, measurements, tool
calls, and any backtracking. The episode is the atomic unit.

Interface (Verification Ledger). To make verifiability
testable, each episode must expose a Verification Ledger: a
minimal structured record that links (i) verification objects:
signal-quality summaries, localized events with explicit
time/lead indices, and unit-consistent measurements defined
by reproducible windows and procedures; (ii) tool prove-
nance: tool names, parameters, software versions/hashes,
input segment/lead identifiers, and failure modes; and (iii)
the final decision: including abstention or escalation when
warranted. A decision is credited only if it can be recon-
structed from the ledger by replayable checks.

Criteria and metrics. Given the ledger interface, we score
task-agnostic episode-level criteria: (i) Traceability: major
claims and decision labels are linked to sufficient verifica-
tion objects or tool outputs for audit; (ii) Replayability: quan-
titative statements are reproducible by rerunning the logged
procedures under recorded parameters; (iii) Robustness vs.
sensitivity: outputs remain stable under nuisance perturba-
tions (noise, baseline wander, resampling, preprocessing
variants, missing leads) yet respond appropriately to clini-
cally meaningful counterfactual changes; (iv) Uncertainty-
aware safety: the system surfaces low-quality signals, con-
flicts, or violated constraints and abstains/escalates when a
safe conclusion is not supported. And budgeted verifiable
success should be additionally reported: performance as a
function of query/tool-call budget and audit effort, rather
than a single unconstrained score.

5.2. Component and Closed-Loop Evaluation

Component evaluation. In the dual-process framework,
System 1 is evaluated by verification-object fidelity: correct-
ness of extracted signal-quality summaries, localized events,
and unit-consistent measurements, consistency across views,
and calibration of quality indicators under heterogeneity.
System 2 is evaluated by trajectory validity: whether it
requests appropriate verification objects, applies coherent
checks and constraints, ensures intermediate claims and fi-
nal decisions are entailed by the ledger, detects and resolves
contradictions via principled backtracking, and invokes ab-
stention/escalation when warranted.

Closed-loop Interfaces. System-level evaluation tests
whether closed-loop integration improves verifiable out-
comes under realistic constraints. Interface A: Verification-
object querying compares single-shot episodes to budgeted
multi-turn episodes where System 2 can query System 1 for

alternative views, reporting improvement in budgeted verifi-
able success and reduction in unresolved conflicts per addi-
tional query. Interface B: Auditable Verification Ledger
measures replay consistency, mismatch rate, and conflict
handling. Interface C: Audit and correction quantifies
audit cost and correction yield, with special focus on ab-
stention under low-quality signals, where safe deferral is
preferable to confident but uncheckable conclusions.

6. Alternative Views
Predicting measurements is enough, interpretation and
decision are unnecessary. A plausible view is that models
should focus on predicting measurements, and that inter-
pretation and decision-making are unnecessary extras. Our
response is that interpretation and decision are essential for
clinical meaning and safety: medicine is not just producing
numbers, but determining what they imply in context, re-
solving cross-lead conflicts, and recognizing when evidence
is insufficient. So a system that can handle interpretation
and decision-making is what makes waveform modeling
clinically meaningful and safe.

End-to-end prediction is sufficient. A credible alternative
is that end-to-end prediction is enough: prioritize accuracy,
calibration, and robustness under shift, and avoid explicitly
staged reasoning that can compound errors. Our response
is not to replace end-to-end learning, but to constrain it
where clinical stakes demand verifiability. The central risk
is undetected wrongness under artifacts, missing leads, and
device/site heterogeneity, so high average AUROC is not
a safety guarantee. Reasoning is therefore warranted only
when it is checkable: decisions must be tied to localized
time–lead evidence, supported by replayable measurements,
challenged by consistency/counterfactual tests, and paired
with explicit abstention when evidence is insufficient.

Data and deployment, not reasoning, are the bottleneck.
Some researchers argue that progress is constrained by prac-
ticalities rather than new framings: better datasets matter
more than reasoning. In waveforms, failures are dominated
by acquisition noise, device/protocol heterogeneity; without
realistic deployment tests, reasoning claims are hard to ver-
ify. Our response is that our position is necessary because
turning these practical needs into implementable require-
ments demands a system that couples waveform semantics
with language intelligence: System 1 aligns physiological
waveform–language, and System 2 supports agentic Plan–
Act–Verify reasoning for complex waveform reasoning.

7. Conclusion
We frame physiological waveform reasoning as verifiable,
episode-level inference that links raw biosignals to clinical
decisions beyond end-to-end prediction. Accordingly, we
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propose a dual-process blueprint: System 1 provides a sta-
ble waveform–language alignment interface that exposes
queryable signal evidence, while System 2 performs agentic
Plan–Act–Verify reasoning, acquiring missing information
and applying deterministic consistency checks under un-
certainty. To make progress comparable and deployable,
we advocate evaluation through a Verification Ledger that
prioritizes traceability and robustness beyond accuracy.
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A. Common Physiological Waveforms
This appendix briefly recaps representative physiological waveform modalities referenced in the main text.

Electrocardiogram (ECG). Records cardiac electrical depolarization and repolarization. It is a quasi-periodic signal
(typically 0.05–50Hz) where specific morphological components (P, QRS, T waves) map directly to conduction pathway
integrity and myocardial state. Clinical datasets typically consist of 10-second, 12-lead recordings with structured diagnostic
annotations (Wagner et al., 2020), often linked to auxiliary clinical data like comorbidities (Johnson et al., 2023).

Photoplethysmogram (PPG). Measures peripheral blood volume changes via optical absorption. It encodes hemodynamic
parameters including heart rate and vascular tone (typically 0.5–2Hz) and is coupled to the ECG via Pulse Transit Time.
PPG quality is highly sensitive to sensor placement, skin tone, and motion artifacts (Bent et al., 2020; Fine et al., 2021),
often requiring task-specific window lengths (e.g., shorter for HR, longer for respiratory modulation) (Allen, 2007).

Electroencephalogram (EEG). Captures synaptic potentials aggregated across the scalp. It is characterized by spectral
dominance across distinct bands—delta (∼0.5–4Hz) to gamma (>30Hz)—and transient graphoelements linked to cognitive
or pathological brain states (Buzsáki, 2006). Signal characteristics are heavily influenced by the electrode montage (e.g.,
10-20 system) and neural dynamics (Craik et al., 2019).

Electromyogram (EMG). Measures muscle motor unit activation via electrical potentials. It reflects neuromuscular
recruitment through burst patterns and high-frequency spectral signatures (20–500Hz) (De Luca, 1997). Unlike ECG, EMG
lacks a universally standardized montage, often adapting sensor placement to specific muscle groups following guidelines
like SENIAM (Hermens et al., 2000).

Phonocardiogram (PCG). Records mechanical heart sounds (acoustic vibrations). It validates the mechanical response to
electrical excitation, emphasizing valve closure timing (S1/S2) and turbulent flow (murmurs).

Other physiological waveforms. Many additional physiological signals appear in modern monitoring, including arterial
blood pressure (ABP), respiratory waveforms such as airflow or impedance-based respiration, capnography for end-tidal
CO2, electrodermal activity (EDA), and peripheral temperature.

B. Call to Action for Verifiable Physiological Waveform Reasoning
This appendix translates the paper’s position into concrete, stakeholder-specific steps. The goal is to move the community
from end-to-end prediction toward verifiable, replayable, budget-aware waveform reasoning, where every decision is
supported by localized evidence and reproducible checks.

B.1. Who should do what

Benchmark and dataset builders. (i) Publish benchmarks that mirror deployment: artifacts, missing channels, device/site
heterogeneity, and label uncertainty. (ii) Provide an official evaluation harness that consumes a minimal Verification Ledger;
phase it in via (a) bonus scoring for ledger outputs, then (b) main-leaderboard requirement. At minimum, the ledger should
record: claim type, time/lead span, tool-derived measurements (with units), checker/tool version, and provenance. (iii)
Release perturbation generators with fixed seeds and documented ranges, covering noise, baseline wander, motion artifacts,
resampling, channel drop, plus at least one deployment-realistic failure mode. (iv) Define tiered audit budgets and protocols
that cap inspection time, tool calls, and optional human review, enabling realistic and comparable evaluation.

Model builders. (i) Expose structured evidence outputs as first-class predictions, including signal quality, localized
events with time and channel indices, and unit-consistent measurements. (ii) Implement a Plan–Act–Verify loop that can
request missing evidence, invoke deterministic tools, perform consistency checks, and abstain or escalate when evidence
is insufficient. (iii) Report verifiability metrics together with task performance, including traceability to evidence, replay
success, robustness under perturbations, and calibrated abstention under budgets.

Tooling community. (i) Maintain versioned, deterministic tool suites for quality assessment, delineation, interval measure-
ment, morphology descriptors, and artifact detection. (ii) Enforce provenance logging as part of the tool interface, including
tool identity, version hash, parameters, input window, channels, and failure status. (iii) Provide conformance tests and
reference outputs so that ledger checks are replayable across platforms and environments.

Clinical and deployment partners. (i) Define operational policies for abstention and escalation, specifying what constitutes
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sufficient evidence for each workflow setting. (ii) Specify audit budgets and oversight requirements, including what evidence
must be shown for acceptance and what triggers human review. (iii) Provide structured feedback traces that identify which
evidence was missing, unreliable, or misleading, enabling targeted improvement of tools and models.

B.2. Benchmark roadmap as a community plan

This roadmap is a staged plan that coordinates multiple stakeholders. Dataset builders provide the benchmark and
perturbations, tool developers provide replayable checks, model builders produce ledger-backed decisions.

Phase 1: Ledger-first leaderboards, months 0 to 6. (i) Benchmark builders add a ledger requirement to existing tasks and
publish a validator that checks schema compliance and replayability. (ii) Tooling community releases a reference tool suite
and conformance tests so that reported measurements can be reproduced. (iii) Model builders submit systems that produce
structured verification objects, explicit checks, and abstention decisions under stated budgets.

Phase 2: Artifact and heterogeneity challenge sets, months 6 to 18. (i) Benchmark builders release controlled perturbation
suites and device or site shift splits with documented protocols. (ii) Community evaluates robustness together with sensitivity,
focusing on unsafe high-confidence errors and whether abstention reduces such failures under budgets.

Phase 3: End-to-end workflow episodes, months 18 and beyond. (i) Benchmark builders publish multi-step episodes that
mirror real workflows, including quality gating, evidence extraction, measurement, decision-making, and escalation. (ii)
Clinical partners define workflow-specific evidence requirements and escalation policies so success reflects operational
safety constraints. (iii) Model builders integrate System 1 evidence extraction with System 2 Plan–Act–Verify, demonstrating
replayable reasoning under realistic audit budgets.

C. Verification Ledger and Verification Objects: Schema and Case Studies
This appendix specifies a minimal, auditable Verification Ledger and concrete verification objects. The ledger is the
evaluation interface: an episode-level conclusion is credited only if it can be re-derived from (i) localized verification objects
and (ii) replayable procedures recorded in the ledger.

Minimal Verification Ledger fields

Inputs Record identifier; record hash; sampling rate; lead set; acquisition metadata; task query.

Pointer Canonical scope pointer for all evidence: record id; signal space raw or preproc; leads;
sample start/sample end; fs; preproc id; view id.

Preprocessing preproc id; ordered ops such as filtering, resampling, normalization; parameters; determinism settings;
output hash.

Views view id; scope pointer lead subset and time window; preproc id; render parameters.

Verification Objects Signal-quality summaries; localized events; unit-consistent measurements with units and scope pointer;
conflicts with scope and resolution pointers.

Tool Run tool name; semantic version; code hash; runtime or container hash; parameters; seed; input pointers; status;
failure mode; output hash.

Deterministic
Checks name; input object ids or pointers; rule; threshold; tolerance; result; tool-run provenance reference.

Decision Final label or text; abstain flag; escalate flag; supporting object/check pointers; unresolved conflicts;
constraints checked.

Budget Tier id; caps max views, max tool calls, max wall-clock, optional human review; realized usage views, tool
calls, wall-clock, audit steps.
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Verification object and check templates

Pointer {id, record id, signal space, leads, s start, s end, fs, preproc id,
view id}

Preproc {id, input pointer, ops, params, determinism, output hash}
View {id, scope pointer, preproc id, render params}
Signal Quality
Summary

{id, metric, value, unit, scope pointer, threshold, flag, method ref,
provenance ref}

Localized Event {id, type, scope pointer, confidence, attributes, notes, method ref,
provenance ref}

Unit Consistent
Measurement

{id, name, value, unit, scope pointer, method ref, uncertainty,
tolerance, provenance ref}

Tool Run
(Provenance)

{id, tool, version, code hash, runtime env hash, params, seed,
input pointers, status, failure mode, output hash}

Conflict {id, scope pointer, sources object ids, description, severity,
resolution status, resolution pointers}

Deterministic
Check

{id, name, input object ids, rule, threshold, tolerance, result,
provenance ref}

Decision {id, label, text, abstain, escalate, supports, constraints checked,
unresolved conflicts}

Audit rules: What makes an episode verifiable

Traceability Every major claim and the final decision reference explicit pointers to verification objects and deterministic
checks. Free-form rationales without pointers are not creditable.

Replayability Any quantitative statement is reproducible by re-running the logged tool run using the recorded code hash,
runtime hash, parameters, and seed under the recorded scope pointer, matching within the stated tolerance.

Unit and Scope
Discipline

Measurements carry units and an explicit scope pointer lead and time in sample indices plus fs and
method ref. Ambiguity in unit, scope, or method breaks replayability.

Determinism
Discipline

All tools that can affect values must log code hash, runtime or container hash, and seed; checks must log
tolerance. Missing determinism metadata downgrades the episode to non-verifiable.

Quality Gating If a quality summary fails for a required scope pointer, the episode must query an alternative scope, abstain
or escalate, or log a deterministic check that justifies validity under the limitation.

Conflict Handling If conflicts are detected across tools, views, or scopes, the ledger logs scope, sources, and resolution
pointers. Unresolved high-severity conflicts cannot support a definitive decision.

Budget Compliance Credited decisions must satisfy the declared tier caps for views, tool calls, and wall-clock; budget overruns
are logged and may be disqualified per protocol.

C.1. Case Study

This case study illustrates uncertainty-aware safety in a verifiable episode. The system first records objective signal-quality
evidence (e.g., lead dropout and low SNR) as verification objects tied to the evaluated time/lead scope. It then runs two
independent rhythm analyses whose outputs disagree at high severity (AF vs. sinus), and logs this disagreement as an
unresolved conflict object. Two deterministic checks—(i) a quality-gating rule requiring required leads and SNR above a
threshold, and (ii) a conflict policy that defers when high-severity disagreements remain unresolved—are applied to these
objects. Because the quality gate fails and the conflict policy triggers deferral, the episode returns an explicit abstain+escalate
decision (“unknown rhythm”), with a support list that points back to the quality metrics, the conflict, and the specific checks
that forced deferral. This makes the safety behavior auditable: a reviewer can replay the checks and verify that abstention
follows directly from recorded evidence under the stated policy and budget.
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Case Study: Low-quality recording triggers abstention

Inputs Record rec 789 sampled at 500 Hz. Leads: I, II, III, aVR, aVL, aVF, V1–V6. Task: determine rhythm and
triage.

View Single view over the full 10-second segment (all leads), using the default preprocessing.
Tools executed A signal-quality module, two independent rhythm analysis tools (A and B), and a ledger checker.
Quality evidence Lead I dropout detected ⇒ quality failure.

Estimated SNR = 6 dB (required ≥ 10 dB) ⇒ low-quality flag.
Rhythm hypotheses Tool A indicates atrial fibrillation (AF); Tool B indicates sinus rhythm.

These outputs form a high-severity unresolved disagreement.
Deterministic
checks

Quality gating: required leads present and SNR ≥ 10 dB ⇒ FAIL.
Conflict policy: unresolved high-severity disagreement ⇒ DEFER.

Decision Return unknown rhythm; abstain from definitive rhythm labeling and escalate for further review.
Supports: lead dropout, low SNR, AF vs sinus disagreement, quality-gating failure, conflict-policy deferral.

Budget Tier: standard. Limits: 1 view, 4 tool calls, 2 s wall-clock.
Usage: 1 view, 4 tool calls, 0.9 s wall-clock.

Note: Detailed object identifiers, hashes, and runtime metadata follow Appendix C and are omitted here for readability.
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